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Upper bounds for multiplicities in a tensor product of 
representations and in a restriction of group representations 
to a subgroup 

A U Klimyk 
Institute for Theoretical Physics, Kiev 130, USSR 

Received 28 November 1984, in final form 11 April 1985 

Abstract. Upper bounds for multiplicities of irreducible representations of a semisimple 
compact Lie group in the tensor product of representations and multiplicities of irreducible 
representations of a subgroup in an irreducible representation of a group are derived. Pairs 
of groups and subgroups appear from the representation theory of non-compact groups. 

1. Introduction 

The tensor products of group representations and a restriction of representations of a 
group into its subgroup are of great importance for contemporary theoretical physics. 
In this paper we deal with multiplicities of irreducible representations in the decomposi- 
tion of tensor products and of restrictions. The importance of the problem of multi- 
plicities in physics is seen for example from the fact that physicists derive tables for 
them (McKay and Patera 1981, Wybourne 1970). However, tables can contain only 
the representations w for which dim w < N, N is a fixed integer. 

Here we are concerned with another aspect of the multiplicity problem. Namely, 
we give upper bounds for multiplicities in the tensor products and in a restriction. 
Some results of this type are known (Boerner 1955, Godement 1952, Harish-Chandra 
1954, Wybourne 1970). We derive new results which concern, mostly, degenerate 
representations (with zero components in highest weights). 

Our method uses the relationship between finite dimensional and induced rep- 
resentations of the semisimple non-compact Lie group G. The reciprocity theorem 
permits us to estimate a multiplicity of an irreducible representation of the maximal 
compact subgroup K in an induced representation of G.  The theorem on the finite 
dimensional sub-representation (cf P 2 below) defines the induced representation which 
contains the fixed finite dimensional representation of G.  A combination of these 
theorems leads to the estimates for multiplicities of irreducible representations of K 
in finite dimensional representations of G. The complexification G, of G has the 
compact real form Gk. The groups G and Gk have the same finite dimensional 
representations. Therefore, for finite dimensional representations the reduction G -, K 
is equivalent to the reduction G k  + K. If G is a complex semisimple Lie group then 
G k  = K O  K and we have the reduction K O  K-, K (diagonal imbedding). This reduction 
leads to the decomposition of the tensor product of representations. 

The triples (G, Gkr K) for classical Lie groups are given in table 1. The pairs Gk 3 K 
for special Lie groups are enumerated in table 2. 
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Table 1. The triples (G, Gk, K). 

Table 2. The pairs (Gk, K) for special Lie groups. 

G k  E6 E, E, 

K Sp(4) SU(6) XSU(2) SO(10) F4 SU(8) SO(12) XSU(2) 

K E6 SO( 16) E, xSU(2) Sp(3) xSU(2) SO(9) SU(2) XSU(2) 

2. Relationship between induced and finite dimensional representations of a 
non-compact semisimple Lie group 

Let G be a non-compact semisimple connected Lie group, and K its maximal compact 
subgroup. Let G = ANK be an Iwasawa decomposition of G, where A is a commutative 
subgroup, and N is a nilpotent subgroup (Warner 1972). If M is a centraliser of A in 
K then P = ANM is a minimal parabolic subgroup of G. Subgroups M for classical 
simple Lie groups are given in table 1. A subgroup P’ of G, which contains P, is called 
parabolic. The decomposition P = ANM of P defines the decomposition P’ = ANM’, 
M c M ’ c  K, of P‘ (Warner 1972, Klimyk 1979). Subgroups M’ which will be used 
below are given in table 3. We give some explanation for table 3. The subgroup M, 
of Sp( n, C )  consists of the matrices 

diag(g, ui ,  ~ 2 , .  . . , U,) g E Sp( n -2i)  UJ E SO(2). 

The subgroups MI of GL( n, C )  and SO( n, C )  are of the same structure. In the case 
of U(p, q )  the subgroup MI consists of the matrices 

diag(g1, 1 1 1 5 .  , U,, U,, . * .  , U19 gz) 

g1 E U(P - i )  g2 E U(q - i)  U, E U( 1). 

We have the same structure of MI for SO,( p, q )  and Sp( p, q ) .  For SOo( p, q ) ,  uJ = i.1, 
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and for Sp(p, q ) ,  U, E Sp(1). The letter Z in table 3 denotes a discrete subgroup. The 
subgroup M, of GL(n, R )  consists of the matrices 

We have the same structure of M, for Sp(n, R ) .  In the cases of SU*(2n) and SO"(2n) 
the subgroup MI  consists of the matrices diag(g, u l , .  . . , U,), where g E Sp( n - i ) ,  U] E 

Sp(1) for SU*(2n), and g E U ( n - 2 i ) ,  u , E S U ( ~ )  for SO*(2n). A discription of the 
groups G and their Lie algebras can be found in Helgason (1962). 

Table 3. The subgroups M' and M. 

G M' M 

SO*(2n) 

M, =U(;) x U(1) x . .  . x U ( l ) ,  

M ,  =SO(n-2i )  xSO(2) x . .  . S 0 ( 2 ) ,  

M, = Sp(n - i) xSO(2)  X .  . . x S0(2) ,  

M, = U ( p -  i) x U ( q  - i )  xU(1)  x ,  , . x U ( l ) ,  

i = 1,2, . . . , n - 1 

i =  1 ,2 , .  . . 

i = 1 , 2 , .  . . 

i = 1 , 2 , .  . . 

I =  1 , 2 , .  . . , q 
M, =SO( p - i) XSO(q- i )  XZ, 

M, = Sp( p - i )  x Sp(q - i )  XSp(1) X . .  . X Sp(1) 
M , = O ( n - i ) x Z ,  i = l , 2  , . . . ,  n 
M , = U ( n - i ) x Z ,  i = 1 , 2  , . . . ,  n 
M, = Sp(n - i) XSp(1) X . .  . XSp(l) ,  

i = 1 , 2 , .  . . 

i =  1 , 2 , .  . . 
M ,  = U ( n  -2 ; )  xSU(2)  X .  . . XSU(2), 

M ,  =SO(n -2i, C) xSO(2) x . .  .xSO(2)  

M ,  =Sp(n  - i )  XSO(2) X.. .XSO(2) 

M ,  = S p ( p -  I ,  
M ,  = GL( n - i, R )  x Z 

- i) XSp(1) X. ,  , XSp(1) 

M , = S p ( n - i , R ) x Z  
M ,  = SU*(2n -2;) XSp(1) X .  , . XSp(1) 

M, = S O * ( 2 n - 4 i ) x S U ( 2 ) ~  . . .  xSU(2)  

The subgroup P' = ANM' with M' = M ,  will be denoted by PI. We have the Langlands 
decomposition P, = A,N,M, where N ,  c N, A, consists of elements h E A, for which 
hm = mh, m E M,, and M, is a reductive subgroup which is non-compact if P, # P. A 
structural description of M, and N ,  can be found in Warner (1972). The subgroups 
M, which will be used below are given in table 3. 

Let S be a finite dimensional irreducible representation of M, in the space H, which 
coincides with the unit operator U on a non-compact part of M,. Let y be a complex 
character of A,. If d, is a Lie algebra of A, (that is A, = exp d,, d, =log A,), then 
y ( h )  = exp(A(log h ) ) ,  h E A,, where A is a linear form on dl. The correspondence 

is a representation of P, in H. This representation can be written in another form. 
The character y of A, is extended to that of A equating it to 1 on the complement of 
A,. In the same way the linear form A on d, can be extended to that on d = log A. 
Since M ,  = MI  n K the representation (1) can be written as 

hnm + y ( h ) 8 ( m )  h E A  n E N  m E M , .  
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Let t:(K, H) be a Hilbert space of functionsf from K to H for whichf(mk) = f ( k ) ,  
m E M,, with the norm 

llf112 Ilf(k)ll’H dk. 
K 

Our representation of P, induces the representation . r b A  of G in L;(K, H). The operators 
?&(g), g E G, are given as 

r b A  (g)f( k, = ( If( k g )  

where kg E K and h E A are defined by the Iwasawa decomposition of kg, that is 
kg = hnk,, n E N (Warner 1972). If PI = P then the representations r b A  constitute the 
principal non-unitary series. The index i for these representations will be omitted. 

The well known reciprocity theorem asserts that a multiplicity of the irreducible 
unitary representation r7 of K in the representation . i rkA of G is equal to a multiplicity 
of the representation 6 of MI in U. 

Let 59 be a Lie algebra of G. The subalgebra d can be extended to a Cartan 
subalgebra X of 59. Let w be a finite dimensional irreducible representation of G, and 
v a weight of w with respect to X. A restriction of v onto d, is denoted by v , ( w )  and 
is called a restricted weight. Let A , ( w )  be a lowest restricted weight of w on d, (Klimyk 
1979, Lepowsky and Wallach 1973). Let V be a subspace of the carrier space of w 
which is spanned onto the vectors x with the restricted weight A l ( w ) .  It is shown by 
Lepowsky and Wallach (1973) that w realises an irreducible representation of M, on 
V.  I t  will be denoted by 6. We say that the representation w of G is an extension of 
the representation 6 of MI. It is clear that there is an infinite number of non-equivalent 
extensions of 6. A set of these extensions is denoted by a;. If PI = P the index i will 
be omitted. If w E a6 we denote it as wg. 

Theorem on Jinite dimensional subrepresentation. The representation 76, of G may 
contain only one finite dimensional subrepresentation of G, this being with a multiplicity 
not exceeding one. Moreover, rbA may contain as a finite dimensional subrepresenta- 
tion only the representation wg (an extension of 6).  The representation rTTg,, contains 
wg as subrepresentation if and only if A , ( w g )  = A. 

For the case P, = P the theorem is proved by Lepowsky and Wallach (1973). For 
PI = P it is given in Klimyk (1979). 

The last sentence of the theorem defines exactly a finite dimensional representation 
of G which is contained in rbA (if it does). Really, the condition A , ( w s )  = A separates 
in Ob one representation. 

Let us consider a set of the representations xbA of G with fixed 6. Some representa- 
tions ~ 6 ,  contain finite dimensional subrepresentations of G. A set of these subrep- 
resentations coincides with SZ b .  According to the reciprocity theorem the irreducible 
representation U of K has the same multiplicity in all representations r h A  with fixed 
6 and i. Therefore, a multiplicity of U in any irreducible representation of G from 

does not exceed a multiplicity of S in U. The compact group Gk corresponds to 
the group G (cf table 1). The groups G and G k  have the same finite dimensional 
irreducible representations. Thus, we have the following theorem. 

Reciprocity theorem for Jinite dimensional representations. A multiplicity of the irreduc- 
ible representation (T of K in any finite dimensional irreducible representation w of Gk 
from ab does not exceed a multiplicity of the representation S of Mi in U. 
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It is known (Godement 1952) that a multiplicity of the irreducible representation 
U of K in any finite dimensional irreducible representation o of G (and therefore of 
G k )  does not exceed dim U. The reciprocity theorem for finite dimensional representa- 
tions gives more precise estimates. However, we have to describe the sets a;. They 
depend on the type of the pair (Gk, K). 

3. Multiplicities in the tensor product 

Let G be a complex semisimple (or reductive) connected Lie group, and K be its 
maximal compact subgroup. We shall consider G as a real Lie group with a double 
number of paramgers. Every finite dimensional irreducible representation of G has 
a form g + Dp'O Dt ,  where g + Dt '  and g + D t  are complex analytic representations 
of G with the highest weights A' and A, and a bar denotes a complex conjugation. 
Since K is a real form of the complex group G, a complex analytic irreducible 
representation of G is irreducible for K. Therefore, the representation g + D t ' O E  
of G under a restriction onto K gives the tensor product of the irreducible representa- 
tions k + DC' and k -. D': of K. The representation k + Df is contragradient to the 
representation k + DC. Thus, a multiplicity of the irreducible representation k + D i  
of K in the tensor product of the representations k +  Di '  and k - .  D.; is equal to that 
of the representation k + D l  of K in g + D t ' O D t .  Now we have to apply the theorems 
formulated above. 

Let G =  GL(n, C). We use the subgroups Mi and Mi  from table 3. A one- 
dimensional representation S of M, and M, which coincides with U on GL(i, C),  is 
given by n - i integers A l ,  A , , .  . . , A,,-i. The integer A, defines the representation 
cp + exp(iAjcp) of U( 1). We characterise the representation S of M i  by a set of integers 
( A l ,  A , , .  . . , An-,, 0 , .  . . , O )  where (0, .  . . , 0 )  is a null highest weight for GL(i, C)  and 
U(i). The subgroup Ai consists of the matrices 

diag( t , ,  t2,  . . . , t, . . . , t )  tj > 0 t > 0 .  

The theorem on finite dimensional subrepresentations gives that R b consists of the 
representations g + D t ' O  D t  of GL( n, C) with the highest weights 

A'= ( m i ,  m;, . . . , mhPi,  0 , .  . . , 0 )  A =  ( m l ,  m2, .  . . , m,-,, 0 , .  . . , 0) 

for which mj - mj =Ai, j = 1,2 , ,  . . , n - i. 
Let us find irreducible representations U of K = U( n )  which contain the representa- 

tion 6 of Mi. These representations of U(n) have the highest weights 
( mln,  m,,,, . . . , m,,,), which are defined by Gel'fand-Zetlin patterns r m,n m2n . . '  mn-1," mnnl 

(2)  

for which (m,,, m,,, . . . , m,,) = (0, 0,  . . . , O ) ,  and sum (over k )  of the integers mk,,-, and 
mk,n-,-l is equal to A, ( j  = 0, 1, . . . , n - i - l ) ,  and 

m1,,+1 +. * * + mi+~, t+~ = 1In-i. 

Therefore, the highest weights ( mln,  . . . , m,,,,) satisfy the conditions 

mn-,+l,, - mn-l+2,,, - . . . - m,,, S O .  
n- i  

- - -  m,, = -ik 
J - 1  k = l  
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For A = ( m , , m ,  ,..., m,-i,O , . . . ,  0) we have A = ( O  ,..., O , - I ~ , - ~  ,..., - m 2 , - m l ) .  
Thus, reciprocity theorem for finite dimensional representations gives the following 
result. 

Theorem. The tensor product of the irreducible representations of U( n )  with the highest 
weights (m, ,  m,,. . . , m,, 0,. . . , 0 )  and (0,. . . ,O, mi, .  . . , mi, m i )  decomposes into a 
sum of the irreducible representations with the highest weights (m,,, m z n , .  . . , m,,) for 
which 

ms+I+, = m,,,,, = . . . = mn-,+1,n = 0. 

A multiplicity of the representation U with the highest weight (m,,, . . . , m,,,,) in this 
tensor product does not exceed a multiplicity m in U of the one-dimensional representa- 
tion 6 of the subgroup diag(U(l) ,  . . . , U(1), U(n - s)), which is equal to the unit 
operator on U( n - s)  and is characterised by ( m ,  + mi,  m,+ mi,  . . . , m, + mi,  0 ,  . . . , 0 ) .  

The multiplicity m can be evaluated for example by means of the Gel'fand-Zetlin 
patterns (2). The formula 

mult(D*'OD'': D") =mult(D,"OD': DI') 

can be applied to obtain other multiplicity rules from the theorem. 
Let us note that the first part of the theorem can be derived from the known 

Kronecker product rules (a  wide bibliography and useful rules can be found in Black 
et a1 (1983)). In particular, relation (3) is well known. 

Now let G = SO( n, C). It is known that the irreducible representations of S0(21+ 1) 
are self-contragradient. This statement is valid for SO(21) if ml, = 0 in the highest 
weight (m,,, q,,. . . , m l n ) .  Repeating the reasoning for GL(n, C )  we obtain the 
following theorem. 

Theorem. The tensor product of irreducible representations of SO( n )  with the highest 
weights A = ( m , ,  m2, . . . , m,, 0, . . . , 0) and A' = ( m i ,  mh, . . . , m :, 0,  . . . , 0) decomposes 
into a sum of the representations with the highest weights (m,,, m2,, . . . , m,,,,, 0 ,  . . . , 0) 
for which a parity of m l n  + mZn +. . . + m2t,n coincides with that of E, (m,  + mi)  (for 
SO(21-t 1) an assertion on a parity is valid if 2i < 1 - 1). A multiplicity of the irreducible 
representation U with the highest weight (m,,, mzn,. . . , m,,,,, 0 , .  . . , O )  in this tensor 
product does not exceed a multiplicity in U of the one-dimensional representation S 
of M,  which is equal to U on SO(n -2i)  and coincides with cp + exp( m, - ml)icp, 
j =  1,2 , .  . . , i, on the subgroup SO(2). 

The parity condition for m,, +. . . + m,,,, is derived from reciprocity theorem in the 
following way. We have the Cartan decomposition so( n, C) = so( n )  + P for the Lie 
algebra so( n, C) of SO( n, C) (Helgason 1962). Since [so( n), 9'1 c 9, a representation 
of S O ( n )  is realised in 9. It is an irreducible representation with the highest weight 
(1, 1 ,0 , .  . . , 0) (cf Klimyk 1982). The tensor product of the irreducible representations 
of S O ( n ) ,  n =21, with the highest weights (m,,, M,,,. . .) and (1, 1 , 0 , .  . . , O )  decom- 
poses into a sum of representations with the highest weights ( m i n ,  m;,, . . .) for which 
the integers mi,  + m;, +. . . have the same parity as m,,  + m,, +. . . does. This statement 
is valid for the group S0(21+1) if the two last coordinates of the highest weight 
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(M,,, m2, , .  . .) are equal to 0. Hence, the results of Klimyk (1983) on infinitesimal 
operators allow us to conclude that a finite dimensional representation of SO( n, C )  
which is contained in r&, decomposes into a sum of irreducible representations of 
SO( n )  for which numbers m,, + m,, + . . . are of the same parity (here we demand that 
m,, = 0 if n = 21 + 1). This gives the parity condition of the theorem. Of course, the 
parity condition can be proved by means of the known Kronecker product rules 
(without use of reciprocity theorem). 

A formulation of the theorem for Sp( n )  coincides with that for SO( n )  if we replace 
SO(2n - 2 i )  by Sp(n - 2 i )  (cf table 3). 

4. Multiplicity in the restrictions Gk + K 

The set a, of irreducible finite dimensional representations w of G, which are extensions 
of the representation 6 of M, are described in table 4. Let us note that we did not 
take into account the subgroup Z of M in the case of SOo(p ,  q ) .  The subgroup Z 
imposes more strong conditions on w ~ n , .  They are complicated and we do not 
formulate them here. In table 4 the integral parts of i ( p +  q ) ,  f ( p  - q )  and f n  are 
denoted by 1, s and k respectively. We suppose that p 2 q. We have to take out ( m )  
and the condition mZk+l= m for S O * ( 2 n )  if n = 2 k +  1. 

of the irreducible representations w of G which are 
extensions of the representation S of M,. The subgroups M i  are listed in table 3. Again 

Table 5 describes the sets 

Table 4. The sets n, for classical Lie groups. 

G w s Conditions for w E R 6  

Table 5. The sets 0; for classical Lie groups. 

G w s Conditions on w E 

U(P,  9 )  ( m l , . .  . , m p + q )  ( O ) ( A ~ )  . . .  (,I,-~J 

SOdp, 4 )  ( m i , .  . . , m , )  ( 0 )  m,+,=O, j = 1 , 2  , . . . ,  1 
SP(P, 9 )  ( m l , .  . . , m p + r )  (O)(A,) .  . . ( A z )  m 2 j - l - m 2 , = A j ,  j = 1 , 2  , . . . ,  i p + q  

m2,+] = 0, j =  1 , 2 , .  . . , p - 4  
W n ,  R )  ( m l , .  . . , m,)  ( 0 )  m j = O ,  j = i + l , i + 2  ,..., n 
S P ( ~ ,  R )  ( m l , .  . . , m,) (0) m j = O ,  j = i + l , i + 2  , . . . ,  n 
SU*(2n)  ( m l , .  . . , m2")  ( 0 ) ( , i l ) .  . . ( A , )  n ~ ~ , - , - m ~ ~ = A ~ ,  j = l , 2  , . . . ,  i 

mJ = 0, j = 2i  + 1 ,2 i  + 2, . . . , 2 n  
SO*(2n) ( m l , .  . . , m,)  ( A 1 ) .  . . ( A z )  m2]- ,  - mZJ = AJ, j = 1 , 2 , .  . . , i 

m,=O, j = 2 i + 1 , 2 i + 2  , . . . ,  n 

- 

mi - mp+q-j  = AJ, j = 1 , 2 , .  . . , i - 1 
mJ=O,  j = i , i + l ,  . . . ,  p + q - i + l  
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we did not take into account the discrete subgroups Z of Mi. The highest weights 
(0,. . . ,0 )  are denoted by (0) in table 5 .  The one-dimensional representation cp + 
exp(iA,cp) of U(l)-SO(2)  is denoted by (A,). The symbol (A,) with non-negative 
integer Ai is used also to label the irreducible representations of Sp( 1) - SU(2). 

The set a, for the group U(p, q )  is given in Klimyk (1979, statement 6.1). The 
details of derivation are given there. The results of tables 4 and 5 are obtained in the 
same manner. 

It is easy to see that the sets fL, and 0; are infinite. According to reciprocity 
theorem for finite dimensional representations a multiplicity of a fixed irreducible 
representation U of K in any irreducible representation w E of G k  does not exceed 
a fixed integer m = mult (uI,,: 8). This result can be formulated independently of the 
sets ad. In the case of the triples (Gk, K, M) we have the following theorem. 

Theorem. Let (Gk, K, M) be a triple from table 1 for which G is one of the groups 
U( p ,  q ) ,  SOo( p ,  q ) ,  Sp( p ,  q ) ,  SU*(2n), SO*(2n), and w be an irreducible representation 
of Gk with the highest weight (ml ,  m2, m3, . . .). Then for any irreducible representation 
U of K we have the estimate 

mult(w1,: U ) S  mult(v1,: 8 )  

where 6 is the irreducible representation of M which has the highest weight 

(mq+l,  mq+2, * , m,) (m,  + m,+,)(mz+ mp+q-l) ' .  . (1119 + m,+d 

(mi-s+l, mi-s+2, * * * , mr) 

(4) 

( 5 )  

for the reduction U( p + q )  & U( p )  X U( q ) ,  

for the reduction SO(p + q )  & SO(p)  x SO( q ) ,  where 1 and s are integral parts of i ( p  + q )  
and f( p - q )  respectively, 

( m 2 q + l , .  . * 3 m ~ + q ) ( ~ I + ~ Z ) ( ~ 3 - ~ 4 )  . ( m 2 q - 1 - m 2 q )  (6) 
for the reduction Sp( p + q )  .1 Sp( p )  x Sp( q ) ,  

(ml-mZ)(m3-m4) . . *  ( m 2 k - 1 - m 2 k ) ( m 2 k + l )  (8)  
for the reduction S 0 ( 2 n ) & U ( n )  where k is an integral part of in, and It l2k+l  has to be 
taken out if n = 2k. In formulae (4)-(8) ml,  m2, . . . are the coordinates of the highest 
weight of w. 

Some coordinates of the highest weights of the representations w of Gk which 
are equal to 0 (cf table 5 ) .  For the irreducible representations U of K belong to 

which are contained in wIK we have the estimate 

mult(wlK: U)  s mult(crl,,: 6) w € a ; .  (9) 
According to table 5 some coordinates of the highest weight of S are also equal to 0. 
Then the representations U of K for which mult(alMZ: S) # 0 have zero coordinates in 
the highest weights. This and formula (9) mean that zero coordinates of the highest 
weight of w lead to zero coordinates. for U. The zero coordinates of highest weights 
of the representations U of K, which are contained in the representation U, are listed 
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G Representations w of Gk Highest weight of U Zero coordinates for U 

in table 6. The results of table 6 can be easily proved. Really, it follows from table 3 
that the semisimple parts of K and Mi are groups of the same series. Therefore, the 
representations a of K, for which mult(aIM,: 6)#0,  can be found by means of 
Gel'fand-Zetlin patterns. This leads to the results of table 6. 

The assertion of table 6 is a weak form of reciprocity theorem for the triple 
(Gk, K, Mi) .  Let us formulate other results which can be obtained from this theorem. 

Theorem. Let (Gk, K, M i )  be a triple defined by table 3, and w be a representation of 
Gk from table 6. Then for any irreducible representation U of K we have the estimate 

mult(w1,: a) smul t (a lM, :  6)  (10) 

where S is the irreducible representation of M i  and its highest weight is defined by w 
and by the pair (Gk, K): 

The discrete subgroups Z of M i  were not taken into account in this theorem. Let 
us note that the theorem admits simpler (but more rough) formulation. Let MI be a 
semisimple part (or U( p - i) x U( q - i)  if K = U( p )  x U( 4 ) )  of Mi. Then the formula 

mult(wl,: a) mult(a/,:: 0) (11) 
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is the weak form of formula (lo). Here 0 denotes the unit representation of MI. Since 
MI and K are groups of the same series (cf table 3), the multiplicity mult ( ~ 1 ~ : :  0) 
can be evaluated with a help of Gel’fand-Zetlin patterns (cf Klimyk and Gruber 1979). 

5. Conclusions 

We have obtained estimates for multiplicities of irreducible representations in the 
tensor product and in the reduction of representations of a group onto its subgroup. 
To obtain these estimates we have used a part of parabolic subgroups of a semisimple 
non-compact Lie group. An application of other parabolic subgroups leads to new 
estimates. Parabolic subgroups of a semisimple non-compact Lie group can be obtained 
from a root system (cf Warner 1972). 

Let us note that some results of this paper can be derived from the known Kronecker 
product and branching rules. 
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